3.135 \(\int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x} \, dx\)

Optimal. Leaf size=123 \[ \frac {2 b^{3/4} \sqrt [6]{x} \left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right ) \sqrt {\frac {a x^{2/3}+b}{\left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {a x+b \sqrt [3]{x}}}+2 \sqrt {a x+b \sqrt [3]{x}} \]

[Out]

2*(b*x^(1/3)+a*x)^(1/2)+2*b^(3/4)*x^(1/6)*(cos(2*arctan(a^(1/4)*x^(1/6)/b^(1/4)))^2)^(1/2)/cos(2*arctan(a^(1/4
)*x^(1/6)/b^(1/4)))*EllipticF(sin(2*arctan(a^(1/4)*x^(1/6)/b^(1/4))),1/2*2^(1/2))*(x^(1/3)*a^(1/2)+b^(1/2))*((
b+a*x^(2/3))/(x^(1/3)*a^(1/2)+b^(1/2))^2)^(1/2)/a^(1/4)/(b*x^(1/3)+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {2018, 2021, 2011, 329, 220} \[ \frac {2 b^{3/4} \sqrt [6]{x} \left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right ) \sqrt {\frac {a x^{2/3}+b}{\left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {a x+b \sqrt [3]{x}}}+2 \sqrt {a x+b \sqrt [3]{x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^(1/3) + a*x]/x,x]

[Out]

2*Sqrt[b*x^(1/3) + a*x] + (2*b^(3/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/
3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(a^(1/4)*Sqrt[b*x^(1/3) + a*x])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x} \, dx &=3 \operatorname {Subst}\left (\int \frac {\sqrt {b x+a x^3}}{x} \, dx,x,\sqrt [3]{x}\right )\\ &=2 \sqrt {b \sqrt [3]{x}+a x}+(2 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )\\ &=2 \sqrt {b \sqrt [3]{x}+a x}+\frac {\left (2 b \sqrt {b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {b+a x^2}} \, dx,x,\sqrt [3]{x}\right )}{\sqrt {b \sqrt [3]{x}+a x}}\\ &=2 \sqrt {b \sqrt [3]{x}+a x}+\frac {\left (4 b \sqrt {b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{\sqrt {b \sqrt [3]{x}+a x}}\\ &=2 \sqrt {b \sqrt [3]{x}+a x}+\frac {2 b^{3/4} \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {\frac {b+a x^{2/3}}{\left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {b \sqrt [3]{x}+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 54, normalized size = 0.44 \[ \frac {6 \sqrt {a x+b \sqrt [3]{x}} \, _2F_1\left (-\frac {1}{2},\frac {1}{4};\frac {5}{4};-\frac {a x^{2/3}}{b}\right )}{\sqrt {\frac {a x^{2/3}}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^(1/3) + a*x]/x,x]

[Out]

(6*Sqrt[b*x^(1/3) + a*x]*Hypergeometric2F1[-1/2, 1/4, 5/4, -((a*x^(2/3))/b)])/Sqrt[1 + (a*x^(2/3))/b]

________________________________________________________________________________________

fricas [F]  time = 1.58, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x,x, algorithm="fricas")

[Out]

integral(sqrt(a*x + b*x^(1/3))/x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(a*x + b*x^(1/3))/x, x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 132, normalized size = 1.07 \[ \frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}}-\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {a \,x^{\frac {1}{3}}}{\sqrt {-a b}}}\, b \EllipticF \left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{\sqrt {a x +b \,x^{\frac {1}{3}}}\, a}+2 \sqrt {a x +b \,x^{\frac {1}{3}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+b*x^(1/3))^(1/2)/x,x)

[Out]

2*(a*x+b*x^(1/3))^(1/2)+2*b*(-a*b)^(1/2)/a*((x^(1/3)+(-a*b)^(1/2)/a)/(-a*b)^(1/2)*a)^(1/2)*(-2*(x^(1/3)-(-a*b)
^(1/2)/a)/(-a*b)^(1/2)*a)^(1/2)*(-1/(-a*b)^(1/2)*a*x^(1/3))^(1/2)/(a*x+b*x^(1/3))^(1/2)*EllipticF(((x^(1/3)+(-
a*b)^(1/2)/a)/(-a*b)^(1/2)*a)^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(a*x + b*x^(1/3))/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a\,x+b\,x^{1/3}}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + b*x^(1/3))^(1/2)/x,x)

[Out]

int((a*x + b*x^(1/3))^(1/2)/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a x + b \sqrt [3]{x}}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**(1/3)+a*x)**(1/2)/x,x)

[Out]

Integral(sqrt(a*x + b*x**(1/3))/x, x)

________________________________________________________________________________________